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Investigation of Residual and Thermal Stress on Membrane-Based MEMS 
Devices 

Lynford O. Davis 

ABSTRACT 

 Thin films have become very important in the past years as there is a tremendous 

increase in the need for small-scale devices. Thin films are preferred because of their 

electrical, mechanical, chemical, and other unique properties. They are often used for 

coatings, and in the fabrication of Microelectronic devices and Micro-electro Mechanical 

Systems (MEMS). Internal (residual) stress always exists when a thin film is employed in 

the device design. Residual and thermal stresses cause membrane bow, altering the 

anticipated dynamic response of a membrane-based MEMS design. The device may even 

become inoperable under the high stresses conditions. As a result, the stresses that act 

upon the membrane should be minimized for optimum operation of a MEMS device.   

 In this research, the fabrication process parameters leading to low stress silicon 

nitride films were investigated. Silicon nitride was deposited using Plasma Enhanced 

Chemical Vapor Deposition (PECVD) and the residual stresses on these films were 

determined using a wafer curvature technique. By adjusting the silane (SiH4) and 

nitrogen (N2) gas flow rates, and the radiofrequency (RF) power; high quality silicon 

nitride films with residual stress as low as 11 MPa were obtained. 
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Furthermore, an analytical study was also conducted to explore the effect of 

thermal stresses between layers of thin films on the MEMS device operation. In this 

thesis, we concentrated our efforts on three layers of thin films, as that is the most 

commonly encountered in a membrane based MEMS device. The results obtained from a 

parametric study of the membrane center deflection indicate that the deflection can be 

minimized by the appropriate choice of materials used. In addition, our results indicate 

that thin films with similar coefficient of thermal expansion should be employed in the 

design to minimize the deflection of the membrane, leading to anticipated device 

operation and increased yield. 

 A complete understanding of the thermal and residual stress in MEMS structures 

can improve survival rate during fabrication, thereby increasing yield and ultimately 

reducing the device cost. In addition, reliability, durability, and overall performance of 

membrane-based structures are improved when substrate curvature and membrane 

deflection caused by stresses are kept at a minimum. 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Motivation 

 Micro-electromechanical systems (MEMS) combine sensing and actuation 

mechanisms, signal processing, control, wireless and optical communication, and power 

generation on a single system [1]. There are many membrane-based MEMS devices such 

as: accelerometers, electrostatic RF switches, resonators, micro-motors and capacitive 

micro-machined ultrasonic transducers (CMUTs).  

 In MEMS devices such as the CMUTs, the width of a membrane is typically 50-

100 µm while the gap height is on the order of 0.1 µm to maximize the device efficiency. 

Hence, the aspect ratio of these MEMS devices is as high as 1:1000. Note that the initial 

membrane bow as little as 0.01 degrees puts the membrane in contact with the bottom 

substrate, making the device inoperable. Hence, one needs to account for all possible 

initial membrane deflection contributors in the design for proper device operation. It is 

important to note that all the derived analytical formulations, even simulation studies 

(unless explicitly stated), assumes an initial flat membrane shape. This contributes to 

unexpected measured device response as compared to simulated or calculated response. 

 There are three main factors that cause a membrane-based structure to bow. These 

are: (1) residual stress developed during the deposition, (2) the effect of atmospheric 

pressure on the membrane (constant ~0.1MPa), and (3) thermal stress contribution during 
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deposition.  In this thesis, we will minimize the residual stress in the Plasma Enhanced 

Chemical Vapor Deposition (PECVD) reactor by adjusting the process parameters such 

the silane (SiH4) and nitrogen (N2) gas flow rates, and the RF power. Our experimental 

studies to optimize the gas flow rates and RF power indicate tensile stress as low as 11 

MPa in the silicon nitride films, which is considered very low for membrane-based 

MEMS devices. The second cause is the pressure difference between the gap (vacuum) 

and the atmosphere. Hence there is a pressure of 0.1 MPa on the membrane at all times. 

This can bow down the membrane significantly depending on the membrane thickness. 

As this is a constant force on the membrane, basic analytical or simulation studies can 

handle this contributor without any difficulty. The third and mostly unknown contributor 

is the thermal stress in the membrane. The thermal analysis may explain the discrepancy 

between the experimental membrane deflection results to the simulated results during the 

design stage. In this thesis, we will illustrate that for most of the membrane thicknesses; 

the thermal stress is the leading factor for the initial membrane deflection. In this study, 

we will also derive an analytical formula for 3 layer structures (which is the most 

commonly encountered configuration for membrane-based MEMS structures) and plot 

against several membrane variables. 

 The main research objective of this thesis is to present a clear analysis of the 

effects of both thermal and residual stress as it is applied to devices that possess a 

membrane-like structure.   
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1.2 Silicon Nitride Thin Films 

 Silicon nitride thin film is a widely used material in the micro-fabrication industry 

[1-3]. It has desirable mechanical and electrical properties such as a high resistivity, high 

relative permittivity, and high fracture toughness [3]. In addition, silicon nitride is 

biocompatible and has a high wear resistance. Silicon nitride has a large dielectric 

constant and can therefore be used in many applications such as a dielectric material in 

MEMS capacitors [4]. Silicon nitride can be used for passivation, mechanical protection, 

and as a masking layer for selective oxidation and dry etching [5-6]. Low-stress silicon 

nitride can be critical to the proper functioning of a MEMS device. In micro-fabrication, 

thin films are normally deposited using high temperature (greater than 700 degrees 

centigrade) deposition techniques.  Thin films such as silicon nitride, deposited using 

these methods can result in very high internal stresses. These internal stresses, when 

coupled with other edge, surface, or bulk imperfections, on a silicon wafer can cause 

concentrated stresses which can reduce the apparent strength and performance of a 

MEMS component or device [7]. 

In this research, low stress silicon nitride thin films were deposited using a 

PECVD system. The PECVD system was chosen because of its ability to deposit thin 

film at relatively low temperature (less than 350 degrees centigrade) without 

compromising the quality of the film [5], [8]. Some parameters that can aid in 

determining the quality of the deposited film are the film thicknesses, the residual film 

stress, selectivity to etching, refractive index, etch rate, and surface smoothness [8-10].  
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Previous work has shown that by adjusting the flow rate of the PECVD reactant 

gases, and the RF plasma power; high-quality, low-stress silicon nitride films can be 

produced [8], [10-11]. In this project, the main parameters that were used to control the 

stress in the silicon nitride thin film were the RF plasma power, and the flow rates of 

silane (SiH4) and nitrogen (N2) gases. The quality of the silicon nitride film will be 

determined based on the magnitude of the residual stress in the film, the refractive index, 

and the dry etch rate. 

 

1.3 Thin Film Stress 

The formation of a thin film typically takes place at an elevated temperature, and 

the film growth gives rise to thin film stress. 

The two main components that lead to internal or residual stresses in thin films 

are thermal stresses and intrinsic stresses. Thermal stresses are due to strain misfits as a 

result of differences in the temperature dependent coefficient of thermal expansion 

between the thin film and a substrate material such as silicon. Intrinsic stresses are due to 

strain misfits encountered during phase transformation in the formation of a solid layer of 

thin film [1]. Residual or internal thin film stress therefore can be defined as the 

summation of the thermal and intrinsic thin film stress components [1]: 

                  (1) 

Where: 

  is the residual thin film stress 
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  is the thermal stress component 

  is the intrinsic stress component 

 

1.4 Governing Equations for Stress in Thin Films 

Between a film and a substrate, stress is mainly caused by incompatibilities, or 

misfits due to differences in thermal expansion, phase transformations with volume 

changes, and densification of the film [1]. Simple mechanics of materials solutions are 

therefore used to study the mechanical residual stress in thin films. The solution that will 

be discussed involves the biaxial bending of a thin plate [12]. 

After a film is deposited onto a substrate at an elevated temperature, it cooled to 

room temperature. When the film/substrate composite is cooled, they contract by 

different amounts owing to differing coefficients of thermal expansion between the film 

and the substrate. The film is subsequently strained elastically to match the substrate and 

remain attached, causing the substrate to bend. This along with the intrinsic film stress 

developed during film growth, gives rise to a total residual film stress.  

 

 

 

 

 

Figure 1.1: Free Body Diagram Showing Bending Moment on a Plate 

M M 

y 

h 
x 
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A relationship between the biaxial stress in a plate and the bending moment will 

now be discussed. Parts of the derivation are based on Nix’s analysis [12]. From figure 1 

the bending moment per unit length along the edge of the plate M, is related to the 

stresses in the plate by: 

(2) 

Where: 

y: is the distance from the neutral axis  

α: is a constant and σxx = σzz

 

Figure 1.2: Relationship between Bending Strain and Curvature [12] 

 

A negative curvature for pure bending as a result of a tensile strain is shown in figure 1.2.  

 

 = αy 

The stresses are given by: 

(3) 

Note that the moment is defined to be positive and will produce a positive stress in the 

positive y direction. Figure 1.2 below shows a picture of relationship between curvature 

and strain. 
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The strain is given by: 

(4) 

The curvature-strain relationship is thus given by: 

(5) 

The strain expressed in terms of the biaxial stress is derived from Hooke’s law and is 

given by: 

            (6) 

By substitution of equations 3 and 5, the curvature in terms of the biaxial bending 

moment is given by: 

                 (7) 

The results from the bending moment analysis can be extended for both a film and a 

substrate. It is important to note that the thin film stress equation that will be developed is 

applicable only for a single thin film on a flat substrate.  The film stress equation was first 

developed by Stoney for a beam [13] but it has since been generalized for a thin film on a 

substrate. The equation is applicable if the following conditions are satisfied: (1) the 

elastic properties of the substrate is known for a specific orientation, (2) the thickness of 

the film is uniform and tf << ts, (3) the stress in the film is equi-biaxial and the film is in 

a state of plane stress, (4) the out of plane stress and strains are zero, and (5) the film 

adhere perfectly to the substrate [14]. 
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 Figure 1.3 below depicts the force per unit length and the moment per unit length 

that are acting on the film (Ff and Mf), and substrate (Fs and Ms) respectively. The 

thickness of the film and the thickness of the substrate are denoted by tf and ts

 

. 

 

 

 

 

 

 

Figure 1.3: Force per Unit Length and Bending Moment per Unit Length Acting on Thin 
Film and Substrate  

 

If a biaxial tension stress is assumed, then σxx = σzz = σf. The force on the film 

and substrate are equal and opposite and the film force per unit length is given by: Ff = 

σftf. The moment per unit length of the substrate is thus: 

(8) 

The resulting curvature of the film/ substrate composite is therefore given by: 

     (9a) 

   (9b) 

The stress that a single layer of thin film exerts on a substrate is thus: 

              (10) 

               tf Ff Ff Mf Mf 

Fs Fs 
ts 

Ms Ms 
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Where: 

Es is the Young’s modulus of the substrate 

vs is the Poisson ratio of the substrate 

R is the radius of curvature of the film/substrate composite 

 Equation (10) is the fundamental equation that calculates the residual stress 

experienced by a thin film. The equation is applicable for a single film deposited onto a 

substrate, in which the film thickness is very small compared to the substrate thickness. 

 

1.5 Conclusion and Chapter Objectives 

 This chapter overviews of the basic parameters and mechanics of solids 

background to fully understand what contributes to the film stress and more importantly, 

how it can be minimized. Chapter 2 will discuss the processing of the silicon nitride thin 

film that includes deposition, measurement of the film thickness, and the residual film 

stress measurement. Chapter 3 will document and discuss the results that were observed 

as the flow rates of the PECVD reactant gases and RF plasma power were controlled in 

order to obtain the low stress film that is desired. In chapter 4, the characterization 

process will be extended to include how thermal stresses in structures of multiple layers 

of thin film can be minimized. Finally, chapter 5 will include a discussion on various 

applications of membrane-based MEMS devices. Particular emphasis will be placed on 

the design of the MEMS capacitive micromachined ultrasonic transducer.  
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CHAPTER 2: PROCESSING OF LOW-STRESS SILICON NITRIDE THIN 
FILMS 

2.1 Plasma Enhanced Chemical Vapor Deposition (PECVD) Process 

2.1.1 Plasma 

Matter exists in four states: solid, liquid, gas, and plasma. Plasma is the most 

common state of matter and though most of it is not visible, it comprises about 99% of 

our visible universe [15]. Plasma occurs naturally and exists on the earth in flames, 

lightening, and the auroras; plasma is even a part of our sun, the core of stars, x-ray beam 

emitting pulsars, and supernovas. The plasma gas carries an electrical charge. The gas is 

comprised of approximately the same number of positively charged ions and electrons. 

Plasma is therefore a mixture of neutrally ionized gas which allows positively charged 

ions and electrons to coexist, when enough energy is supplied to the gas to free electrons 

from atoms or molecules. Because plasma contains a large amount of positive ions with 

very high kinetic energy, it plays a very important role in micro-fabrication. In micro-

fabrication, plasma can be used to [2]: deposit films onto a substrate material, and to 

remove a portion of base material by knocking out the atoms from that material. In this 

research, plasma is used to assist in depositing silicon nitride thin film to a silicon 

substrate in a process known as Plasma Enhanced Chemical Vapor Deposition (PECVD). 
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2.1.2 Chemical Vapor Deposition (CVD) 

In micromachining, there are essentially two classes of deposition: Physical 

Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) [2]. In Physical Vapor 

Deposition, particles are directly impinged on a hot substrate. An example of physical 

vapor deposition is sputtering, which is used to deposit thin metallic films onto the 

surface of a substrate material. In CVD, source gases are first introduced into a reaction 

chamber. Energy is then supplied to these gases in the form of either heat, plasma 

generation, or other techniques. The energy created cause a chemical reaction, which 

results in the decomposition of the source gas and reaction of chemicals to form a solid 

film. The by-products of the chemical reaction can then be vented. Examples of Chemical 

Vapor Deposition are: Plasma Enhanced CVD, Low Pressure CVD, and Atmospheric 

Pressure CVD. 

2.1.3 Plasma Enhanced Chemical Vapor Deposition (PECVD) 

 An advantage of employing plasma is the relative ease of altering the flow rate by 

using electrostatic forces of magnetic fields [2]. PECVD uses RF plasma to transfer 

energy into the reactant gases in a reaction chamber, and the chemical reaction will not 

occur without the creation of plasma.  

 The PECVD reactor used in this project was manufactured by Uniaxis USA, Inc 

(St. Petersburg, FL) and is shown in figure 2.1. The reactor uses electromagnetic 

radiation and has RF frequency in two modes: low frequency (50 kHz) and high 

frequency mode (13.56 MHz). The use of an RF source to create the plasma in Plasma 

Enhanced CVD significantly reduces the deposition temperature unlike in the case of 
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Atmospheric Pressure CVD and Low Pressure CVD which can have deposition 

temperatures of up to 9000C. This high temperature may cause a measurable damage to 

the substrate material and other undesirable effects that can alter the device performance. 

The first commercial application of Plasma Enhanced CVD was the low temperature 

deposition of silicon nitride at 3000

 

Figure 2.1: Plasma Enhanced Chemical Vapor Deposition (PECVD) System Used to      
Deposit and Characterize Silicon Nitride Thin Film 

C. A view of the PECVD system used in this project 

is shown in figure 2.1. 
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 In this project, a low temperature Plasma Enhanced CVD process was used to 

deposit silicon nitride with a deposition temperature of only 2500

 The deposition was carried out using a Plasma-Therm 700 PECVD system 

(Uniaxis USA, Inc). In this system the plasma can be activated in either a low frequency 

mode LF (50 KHz), or a high frequency mode HF (13.56 MHz). In this experiment, a 

high frequency mode was used, as is typical for this type of characterization [11], [16]. 

Silicon nitride films were deposited using reactant gases of pure silane (SiH

C at a vacuum pressure 

of 900 mTorr. The stress in the silicon nitride thin film was controlled by changing the 

silane or nitrogen gas flow rates, and the RF plasma power in high frequency mode. 

 

2.2 Wafer Preparation and Silicon Nitride Deposition 

 The substrate used for the characterization of the silicon nitride thin films were all 

50 mm (2 inch) <100> crystallographic orientation, n-type bare silicon wafers with 

resistivity 0.4-0.6 Ω cm. The wafers were first cleaned by dipping in Hydrofluoric acid 

(HF) for 2 minutes, followed by rinsing with D.I water. A standard solvent clean was 

then performed using methanol, acetone, and D.I water. The wafers were then dried 

individually with nitrogen gas.  

4) and 

nitrogen (N2) for which the flow rate could be changed. The RF plasma power was also 

adjustable. Literature has shown that high-quality film can be obtained by keeping the 

deposition temperature and the vacuum pressure within the reactor constant [8], [10-11], 

[16]. In addition, better quality film can be obtained if the vacuum pressure is 

substantially small, for example in the range of 900-1200 mTorr [16]. In one experiment, 
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detail analysis of PECVD silicon nitride revealed that a pressure of around 900 mTorr is 

optimal for silicon nitride deposition due to its stable plasma and low- residual stress 

generated [11]. In this project, a constant deposition temperature of 2500

 The thickness of the silicon nitride film was measured optically using a Rudolph 

Ellipsometer Auto EL3 (Rudolph Instruments, Denville NJ).  This instrument was chosen 

due to its accuracy in measuring highly transparent film on a reflective surface that has 

thicknesses in the order of 10Å to 3µm [17]. In addition, the index of refraction of 

PECVD silicon nitride varies based on the fabrication process parameters. The 

ellipsometer allows the measurement of the index of refraction. The system uses a 

helium-neon laser as the optical light source with an operating wavelength of 632.8 nm. 

The method of ellipsometry used to determine the properties of films on a silicon 

substrate has been studied by a number of researchers [18-19].  In summary, the 

ellipsometer measure the changes in the state of polarization of collimated beams of 

monochromatic polarized light caused by reflection from the surfaces of a substrate. 

Using an electric field representation, the incident and reflected beam can each be 

resolved into two perpendicular linearly-polarized components p and s. The p component 

has its electric field vector parallel to the plane of incidence while the s component will 

have its vector normal to the plane of incidence [20]. Whenever a collimated beam of 

C and a vacuum 

pressure of 900 mTorr were used for all the characterization. In addition, all samples to 

be deposited with silicon nitride were processed separately based on its PECVD recipe.  

 

2.3 Silicon Nitride Film Thickness Measurement 
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monochromatic polarized light is reflected from any surface, this causes a phase 

difference and a change in the relative amplitudes of the p and s components. From these 

changes, two angles delta and psi can be determined and be transformed into 

measurements of thickness and refractive index [17], [20]. 

 In this thesis, the ellipsometer was used to measure the thickness of a single layer 

of silicon nitride and the index of refraction. A customized five point measuring scheme 

was used in which measurements were taken at the center of the substrate and then along 

four corners. The averages of these measurements were taken which improve the overall 

result accuracy. In addition, the film thickness measurement obtained by the ellipsometer 

was verified by etching one sample and measuring the step height using a profilometer.  

The measurements were found to be in close agreement.  This etched sample is used as a 

reference to verify the accuracy of the ellipsometer before recording the film thickness of 

a newly deposited nitride sample. A picture of the ellipsometer used for the film 

thickness measurements is shown in figure 2.2. 
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Figure 2.2: Ellipsometer Used to Measure the Thickness of the Silicon Nitride Film 

 

2.4 Residual Film Stress Measurement 

 Silicon nitride thin films deposited using PECVD usually develops some internal 

or residual stress. In this experiment, the stress of the nitride film was determined using 

the wafer curvature technique. A Veeco Dektak 150 Surface Profilometer (Veeco 

Instruments Inc, Woodbury New York) shown in figures 2.3 and 2.4 was used to measure 

the radius of curvature before and after the film deposition. It is important to note that the 
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orientation of the wafer was kept unchanged throughout the measurement of the film 

stress on each wafer. Three stops were used to keep the wafer in place (figure 2.4) which 

promotes consistency and accuracy in the results that are obtained. The radius of 

curvature is an important parameter used to compute the film stress [21]. Using this 

method, the height of the substrate can be modeled as a continuous function of distance 

along the substrate, y . The radius of curvature can then be calculated using: 

            (11) 

Where: 

  , and  
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Figure 2.3: Surface Profilometer Used to Measure the Curvature in the Silicon Substrate 
and Compute the Film Stress 
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Figure 2.4: Silicon Wafer Mounted on the Surface Profilometer with Three Stops Used to 
Restrict Movement of the Wafer 

 

 A scan of the substrate is taken prior to deposition, and after depositing the silicon 

nitride film. Each scan is fitted with a fifth order polynomial by the method of least 

squares. The fit is differentiated to obtain  and  as noted above, which are 

substituted in equation (11) that gives the radius of curvature before the deposition and 



www.manaraa.com

20 
 

after the deposition as a function of scan position. A pre-deposition scan of one of the 

samples used in this experiment is shown in figure 2.4 below. 

 

 

Figure 2.5: Scan of a Wafer before Deposition of Silicon Nitride  

  

By measuring the thickness of the film, and entering known parameters for the 

substrate, the stress of the silicon nitride thin film is calculated using [22]: 

 

           (12) 

Where:  
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 = stress in silicon nitride film after deposition 

  = substrate radius of curvature before deposition 

 = substrate radius of curvature after deposition 

  = Young’s Modulus of the silicon substrate 

  = Poisson’s ratio of the silicon substrate 

 = thickness of the substrate  

  = thickness of the silicon nitride film 

 The pre-deposition and post-deposition curvatures are determined, and equation 

(12) is used to calculate the residual stress of the silicon nitride film. Negative values 

indicate a compressive stress for a convex surface while positive values indicate a tensile 

stress for a concave surface.  The units for the measured stress are Dynes per square 

centimeters (1 Dyne = 10-5 Newton) [22]. The accuracy of the measured stress is 

improved by increasing the scan length around the center of the substrate (typically 70% 

or more) and using a large diameter stylus [22]. In this experiment, a 40 mm scan length 

(80% of the 50 mm substrate) and a 12.5µm radius stylus were chosen from stylus of 

radii 2.5 µm, 5 µm, and 12.5 µm, to allow for higher speed scanning without scratching. 

For the 40 mm scan length, two sets of results were obtained for the computed stress. The 

stress values were first computed between a 15 mm to 25 mm area around the center of 

the substrate, and then between a 5 mm to 35 mm area around the substrate’s center.  

This was done for comparison and to show that even though a scan is taken across a 40 

mm length, there is some flexibility in calculating the stress. The final stress value for a 

sample was calculated by computing the average of the stress values obtained for the 15 
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mm to 25 mm scan area (figure 2.5), and the 5 mm to 35 mm scan area (figure 2.6). 

Figure 2.7 show an example of the result that is obtained from scanning the substrate and 

computing the film stress. 

 

 

Figure 2.6: Post-deposition Scan of Silicon Wafer with Silicon Nitride Film and Stress       
Computed between 15 mm and 25 mm on the Surface of the Wafer 
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Figure 2.7: Post-deposition Scan of Silicon Wafer with Silicon Nitride Film and Stress       
Computed between 5 mm and 35 mm on the Surface of the Wafer 
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Figure 2.8: An Example of the Output Obtained From Scanning the Wafer before and 
after Deposition of Silicon Nitride and Computing the Residual Stress 
  

 The measured stress is the residual film stress that a single layer of film exerts on 

a silicon substrate. As stated before, and in equation (1), the residual film stress σr, is the 

summation of the thermally induced stress σt, in the silicon substrate/film arrangement 

and the intrinsic film stress, σi [12], [23]. The thermal stress is due to the film and the 

substrate having a different coefficient of thermal expansion. Because of this, when the 

film and substrate is exposed to a certain temperature (as in the PECVD chamber) and 
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then allowed to cool, they expand/contract by different amounts. The film is therefore 

strained as it becomes attached to the substrate, resulting in thermal stress. Intrinsic film 

stress is the stress developed from processes such as nucleation and growth and phase 

transformation as the film is being grown. 

 

2.5 Accuracy of Method Used to Determine Film Stress 

Equation (12) is the basic equation that is used to calculate the residual film 

stress. One can observe from this equation that the only parameter measured by the 

Dektak surface profiler is the radius of curvature. This of course, is done by taking a scan 

of the substrate before and after deposition. This equation is an extension of the original 

equation presented by Stoney [14] in 1909 that is used to calculate the film stress on an 

isotropic substrate. The original expression developed by Stoney reads:  

                                                     (13)     

Where:  

R= radius of curvature of the substrate after deposition 

 In the above equation, an initially flat substrate was assumed. Equation (13) has 

since been modified and was first presented in 1987 in the form of equation (12) by Nix 

et al. [24].  The new factor 1/ (  ) in equation (12) has been introduced because one 

of the assumption in using the originally developed Stoney equation is that the width of 

the film is much larger than its thickness, hence the film stress is bi-axial [14]. In 

summary, use of equation (12) requires that: (1) the elastic properties of the substrate are 

known for a specific orientation, (2) the thickness of the film is uniform and tf << ts, (3) 
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the stress in the film is bi-axial and the film is in a state of plane stress (the plane of the 

film stress is independent of direction), (4) the substrate is thin, and (5) the film adhere 

perfectly to the substrate [14]. Equation (12) was used for our analysis as the above 

requirments have been met. The orientation and elastic properties of the substrate were 

known, and these were used as inputs to the surface profilometer before each scan was 

taken.  The standard deviation for each 5 point thickness measurement was relatively 

small when measured by the ellipsometer. The average thickness of the films was about 

100 nm compared to a typical 550 µm substrate thickness. 
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CHAPTER 3: SILICON NITRIDE FILM CHARACTERIZATION 

3.1 Overview of Data Collected 

 In all the test data, the flow rate of the pure silane gas (SiH4), the vacuum 

pressure, and the deposition temperature remained constant. Two main parameters were 

changed throughout the experiment namely: the flow rate of the nitrogen gas (N2), and 

the RF power. In the experiment, the flow rate of the SiH4 gas was kept constant as this 

was sufficient to provide enough data for the stress analysis. The main parameters that 

were used to assess the quality of the silicon nitride film are film stress, refractive index, 

and etch rate. There is a strong correlation between the stoichiometry of silicon nitride 

film and the refractive index. This correlation has shown that the refractive index can be 

used as a measure to determine the quality of the deposited film. Stoichiometric silicon 

nitride thin films are almost inert to most common wet etchants, and a higher refractive 

index usually means higher etch selectivity [25]. The acceptable values for the index of 

refraction of PECVD silicon nitride is 1.8- 2.5 [3]. The importance of the etch rate is that 

higher etch rate is indicative of more pinhole defects and air in the film as a result of 

increased porosity. A lower etch rate therefore, usually indicate a better quality film. 

 

 

 



www.manaraa.com

28 
 

3.2 Effect of RF Power 

The first experiment began with a RF power of 50 W. The original recipe for the 

characterization is summarized in table 3.1 below. 

Table 3.1: Original PECVD Silicon Nitride Recipe 

Parameter Sample 4 

Pure Silane (SiH4 5 sccm ) 

N 1000 sccm 2  

Pressure 900 mTorr 

Power 50 W 

Temperature 250 0C 

Time 10 min 

 

Our results indicate that the average film thickness measurement using the 

Rudolph Ellipsometer was determined to be 1240 ± 16.4 Å.  The corresponding index of 

refraction was measured to be 2.352 ± 0.009. Using these values, the post deposition 

stress was measured using the Veeco Dektak 150 profilometer indicating average silicon 

nitride film stress as 61.3 ± 5.9 MPa (tensile). 

 To investigate the effect of RF power on the stress, the RF power was first 

increased from 50 W to 60 W while keeping the other parameters constant. We could not 

obtain a measurement of the film thickness at this RF power value. This result showed 

that increasing the RF power beyond a certain point while keeping the other parameters 

the same can significantly increase the thickness non-uniformity of the film.  
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Next, we reduced the RF power to 45 W. Table 3.2 summarize the recipe used in 

this portion of the characterization process.  

 

Table 3.2: Modified PECVD Silicon Nitride Recipe with RF Power at 45 W 

Parameter Sample 5 

Pure Silane (SiH4) 5 sccm 

N2 1000 sccm   

Pressure 900 mTorr 

Power 45 W 

Temperature 250 0C 

Time 10 min 

  

From the PECVD recipe in table 3.2, the important measurements that were 

collected are the thickness of the film and the refractive index, as measured by the 

ellipsometer. These values were found to be 1143 ± 6.1 Å, and 2.480 ± 0.012 

respectively.  Using the measured film thickness value, the stress was determined on the 

Dektak profilometer to be 11.3 ± 5.3 MPa. In comparing the results from the recipe in 

table 3.1 and table 3.2, a number of inferences can be made. The first is that there were 

hardly any differences between the thicknesses in the film that were deposited at a power 

of 50 W and at a power of 45 W.  The second observation was that the measured stress at 

45 W had reduced substantially when compared to the stress measurement taken at 50 W. 

This lower average stress value at a RF power of 45 W is due to the fact there is more of 
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a even distribution between the negative compressive stress and the positive tensile stress 

in the film. When the average film stress is computed across a scan range, the tensile 

stress dominates.  

The effect of reducing the RF power was compared to previous work done by [10] 

in which reducing RF power had resulted in an increase in residual stress. The PECVD 

system used in this work however is different and some other parameters were not the 

same. For example, no ammonia gas was used in our experiment and the RF power used 

in [10] was varied between 75 W to 125 W. This result has shown that data obtained can 

vary in different PECVD equipment. Most of the results that will be discussed from here 

on however, have been shown to be in close agreement to that obtain in the literature.  

We have discussed that the index of refraction of the silicon nitride film can be a 

measure of the quality of the film. When the RF power was reduced to 45 W with all 

other parameters remaining constant, the refractive index of the film increased from 2.35 

to about 2.48. This increase has indicated that the quality of the film might have been 

improved; in that, a higher index of refraction has defined higher etch rate resistance [8]. 

It is also interesting to note that at a higher RF power, the deposition rate tends to 

increase. This is because a higher power enhances the plasma in the deposition chamber 

which increases the energy of electrons which results in an increased dissociation of the 

main gases [11]. 
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3.3 Effect of Deposition Time 

 The recipes in table 3.1 and table 3.2 were repeated with two separate samples 

and the deposition time was reduced to 7 minutes in an attempt to achieve film thickness 

at around 1000 Å.  Based on the results obtained, there was no clear correlation between 

the deposition time and the measured stress in the silicon nitride film. The recipes of the 

two samples are summarized in table 3.3. 

 Following the deposition of the silicon nitride layer onto both samples, the values 

obtained from the ellipsometer for sample 1 had thickness and index of refraction 

measurements of 911 ± 3.5 Å and 2.513 ± 0.003 respectively. The thickness of this 

sample at a deposition time of 7 minutes was lower than the value obtained for the 10 

minute run and closer to the 1000 Å target. The index of refraction had increased from 

the previous result of 2.352 obtained with a deposition time of 10 minutes. 

 

Table 3.3: PECVD Recipe with Modified Deposition Time 

Parameter Sample 1 Sample 2 

Pure Silane (SiH4) 5 sccm 5 sccm 

N2  1000 sccm 1000 sccm 

Pressure 900 mTorr 900 mTorr 

Power 50 W 45 W 

Temperature 250 0 250 C 0C 

Time 7 min 7 min 
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 Similar results were observed in sample 2 which had film thickness and refractive 

index measurements of 886 ± 3.4 Å and 2.567 ± 0.004. The measured stress in sample 2 

was mostly tensile with a value of 18.5 ± 1.41 MPa while the tensile stress in sample 1 

was 37.25 ± 3.89 MPa. The results are summarized in table 3.4. The most important 

result in this section is that regardless of deposition time, a reduction in the RF plasma 

power has resulted in both a lower stress film and increased index of refraction. It can be 

concluded therefore that reducing the RF plasma power and keeping certain parameters 

constant can give rise to better quality silicon nitride films. 

 

Table 3.4: Results Obtained when the Deposition Time was Changed to 7 Minutes 

 Sample 1 Sample 2 

RF Power (W) 50 45 

Film Thickness (Å) 911 ± 3.5 886 ± 3.4 

Film Stress (MPa) 37.25 ± 3.89 18.5 ± 1.41 

Index of Refraction 2.513 ± 0.003 2.567 ± 0.004 

 

3.4 Effect of Nitrogen Flow Rate 

In a second experiment, the original recipe as outlined in table 3.1 was taken but 

the nitrogen gas (N2) flow rate was reduced from 1000 sccm to 800 sccm. It is important 

to realize that N2 is responsible for supplying the N atoms for the reaction. Decreasing 

the N2 flow rate should lead to a ‘Si-rich’ silicon nitride layer which has a lower residual 

stress [11]. 
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Table 3.5: Comparison of Original Recipe and the Effect of Reduced N

Parameter 

2 

Original recipe New sample 

N2  1000 sccm 800 sccm 

Thickness 1240 ± 16.4 Å 1314 ± 77.3 Å 

Index of refraction 2.352 ± 0.009 2.751 ± 0.135 

Stress (MPa) 61.35 ± 5.87 42.75 ± 13.08 

Time 10 min 10 min 

 

 From table 3.5, the residual film stress is reduced by lowering the nitrogen gas 

flow rate while keeping the other parameters constant.  The thickness of the film was in 

the same range as compared to the original recipe. It was also observed that the index of 

refraction had increased, indicating that a better etch rate is expected. The downside of 

using a lower nitrogen gas flow rate however, is the increased non-uniformity in the film 

thickness.  

By using the original recipe with 60 W RF power, a thickness measurement could 

not be determined. Hence the recipe was modified as shown below. 

 

 

 

 

 

 



www.manaraa.com

34 
 

Table 3.6: Increasing RF Power with Reduced N2

Parameter 

 Flow Rate 

Original recipe Modified recipe 

Pure Silane (SiH4) 5 sccm 5 sccm 

N2  1000 sccm 800 sccm 

Pressure 900 mTorr 900 mTorr 

Power 50 W 60 W 

Temperature 250 0 250 C 0C 

Time 10 min 10 min 

 

 In the modified recipe, a nitrogen gas flow rate of 800 sccm was used. As we have 

concluded before (table 3.5), it is possible to obtain a better quality film with lower 

residual stress with lower nitrogen gas flow rate. With this modified recipe, the results 

were as follows: the film thickness measurement was determined to be 1698 ± 21.9 Å, 

the index of refraction was 2.266 ± 0.023, and the residual film stress was determined to 

be 91.75 ± 0.35 MPa. The results have shown that an increase in RF plasma power 

beyond a certain point can reduce the quality of film. This is shown by an increased in 

residual film stress and a decrease in the index of refraction which negatively impacts the 

film quality.  

 To further study the effect of a reduced nitrogen gas flow rate on the film stress, 

an additional recipe was developed which was slightly modified from that of sample 2 in 

table 3.3. The PECVD recipe of sample 2 is presented in table 3.7 along with the recipe 

for the sample to be analyzed. 
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Table 3.7: Effect of a Reduced N2 

Parameter 

Flow Rate with Reduced Power and Time 

Sample 2 Adjusted recipe 

Pure Silane (SiH4) 5 sccm 5 sccm 

N2  1000 sccm 900 sccm 

Pressure 900 mTorr  900 mTorr 

Power 45 W 45 W 

Temperature 250 0 250 C 0C 

Time 7 min 7 min 

 

 Using the modified recipe above, the thickness of the deposited silicon nitride 

film was 950 ± 2.4 Å, similar to that of sample 2. The measured refractive index was 

2.663 ± 0.009, increased from 2.567 as compared to sample 2. We found that the residual 

film stress obtained using this recipe was compressive. At some measurement points 

however, the residual stress was tensile making the average residual stress very low 

tensile (1.25 ± 30.05 MPa). This result has shown that by using optimized parameters for 

the PECVD, high quality silicon nitride thin film with very low stress can be obtained. 

 The important conclusion from the PECVD silicon nitride films characterization 

experiments are as follows. 1) RF power directly affects the quality of the silicon nitride 

films. Low stress film is obtained by using low RF power with optimized silane and 

nitrogen gas flow rates. 2) A lower N2 gas flow rate is desired to achieve low stress 

PECVD silicon nitride. Also, a higher SiH4 to N2 gas flow rate ratio gives lower overall 

film stress values. 
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3.5 Effect of Pressure 

The lower vacuum pressure directly influences the stability of the generated 

plasma [26]. Previous experiments indicate that a pressure around 900 mTorr is ideal for 

low residual stress characterization with stable RF plasma power [11], [26-27]. 

 

3.6 Plasma Etch: Overview of Process 

A portion of the silicon nitride film was etched on each of three substrates that 

were deposited with silicon nitride. This was done in the plasma dry etch chamber that 

was configured to the PECVD system. A separate method was used to determine the 

thickness of the film after etching. This method utilizes a step-height technique which is 

more appropriate for measuring film thickness. A special captone tape (figure 3.1) was 

used to protect a part of the film from etching. An Alpha-Step Profilomer (Tencor 

instruments, Mountain View California) was then used to measure the step. The step-

height is determined by comparing the thickness of the etched portion of the film to the 

un-etched portion.  

Table 3.8: Recipe for Plasma Etch 

CF 80 sccm 4 

O 4 sccm 2 

Pressure  250mTorr 

RF Power 100 W 

Time 20-30 secs 
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Table 3.8 gives a summary of the plasma etch recipe used to characterize the etch 

rate of the silicon nitride layer. Table 3.9 presents the samples that were used for etching 

based on their PECVD silicon nitride recipe along with the film thickness, index of 

refraction and the measured residual film stress.  

 

 

Figure 3.1: Silicon Nitride Film on a Wafer with Region that was Protected with Captone 
Tape Clearly Visible after Plasma Etch 

 

 

 

 

 

 

Protected portion of silicon 
nitride film after removing 
captone tape 

Silicon nitride film on 
silicon wafer 
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Table 3.9: Samples Used for Plasma Etch 

Parameter Sample A Sample B Sample C 

Pure Silane (SiH4) 5 sccm 5 sccm 5 sccm 

N2  1000 sccm 1000 sccm 800 sccm 

Pressure 900 mTorr 900 mTorr  900 mTorr 

Power 50 W 45 W 50 W 

Temperature 250 0 250 C 0 250 C 0C 

Time 10 min 10 min 10 min 

Thickness 1249 ± 47.6 Å 1016 ± 15.7 Å 1305 ± 133 Å 

Refractive Index 2.563 ± 0.074 2.911 ± 0.031 2.69 ± 0.263 

Stress (MPa) 24.75  3.25  16.25  

 

 From the results above, it can be seen that the thickness, Refractive index, and 

stress values agrees reasonably well to those samples that were previously characterized. 

The stress values were lower in table 3.9 than those of the first samples that were 

analyzed. However, it is found out that the general trend is similar.  

 

3.7 Etch Rate Comparison 

As previously discussed, the refractive index can be used as a measure of the 

quality of the film in terms of etch rate. Hence, we expect the film with the highest 

refractive index to have a lower etch rate compared to the other films. The step height of 

the three samples was measured individually with an Alphastep Profilometer (figure 3.2).  
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The samples were etched using a plasma dry etch tool and the etch time for samples A, B, 

and C, were 25, 20, and 20 seconds respectively. The resulting etch rates were calculated 

and are summarized in table 3.10. It should be seen that the sample with the largest index 

of refraction (Sample B) had a lower etch rate as expected, when compared with the other 

samples which agrees with what was expected. 

 

Table 3.10: Summary of Etch Rates 

Parameter Sample A Sample B Sample C 

Height (Å)  750 500 600 

Time (s) 25 20 20 

Etch Rate (Å/s) 30 25 30 
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Figure 3.2: Alpha-Step Profilometer Used to Measure Silicon Nitride Step Height From 
One Surface of the Etched Portion of the Nitride Film to the Un-etched Portion 
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CHAPTER 4: THERMAL STRESS EFFECTS IN MULTI-LAYER MEMS 
STRUCTURES 

4.1 Overview of Thermal Stress in Thin Films 

 The residual film stress is the stress that is present in a thin film after a deposition 

process. This overall stress has two components: the thermal mismatch stress, and the 

intrinsic stress. The thermal mismatch stress is due to the film and substrate having 

different thermal expansion coefficients while the intrinsic film stress is composed of 

parameters induced during nucleation and growth [1], [28]. Intrinsic stress might include 

stress contributions from: (1) recrystallization processes, (2) incorporation of atoms 

(residual gases), (3) differences in lattice spacing of monocrystaline substrates and the 

film during epitaxial growth, (4) microscopic voids and special arrangements of 

dislocations, (5) phase transformation, and (6) variation of the interatomic spacing with 

the crystal size [29-30].  

 In this chapter, the thermal stress effects on multi-layer systems will be discussed 

and analyzed. This analysis is directly applicable to MEMS devices as they are composed 

of multiple layers of patterned thin films. The effects of the thermal stress becomes 

apparent in multi-layer systems when the system bends as a result of each layer of thin 

film having different thermal expansion coefficients.  
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 In many applications, particularly in the area of optical MEMS, flat thin films 

surfaces are necessary for optimal performance [31]. Highly stressed layers of thin films 

may affect the proper functioning of a device.  

 

4.2 Background Equations on Thermal Stress in Thin Films 

 The equations in this section were developed for thin films that are deposited onto 

a stress-free layer at temperature Td and allowed to cool to room temperature, Tr. It is 

assumed that the deposited thin film will contract by the same amount as the substrate 

[1]. The thermal strain on a substrate (in one in-plane dimension) is given by: 

               (14) 

Where: 

   is the linear thermal expansion coefficient of the substrate and,  = Td - Tr 

 The thermal strain for a thin film that is not attached to a substrate is: 

 (15) 

Where: 

   is the linear thermal expansion coefficient of the film 

If the film is attached to the substrate, the actual strain in the film must be equal to the 

strain of the substrate such that: 

  (16) 

The thermal mismatch strain is defined as the difference between the actual strain and the 

strain the film would have if it was free [1]. This thermal mismatch strain is given as: 

            (17) 
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The film achieves this biaxial strain by developing an in-plane biaxial stress. The in-plane 

biaxial stress only occurs when the two in-plane stress components are equal to each 

other. The biaxial stress is given as: 

(18) 

Where: 

   is the Young’s Modulus of the film 

  is the film’s Poisson ratio 

 Note that a positive stress indicates a tensile stress and a negative value indicates 

compressive stress. The film stress will be positive if the thermal expansion coefficient of 

the film is greater than that of the substrate. 

 

4.3 Background Equations on Center Deflection in a MEMS Structure  

The center deflection associated with biaxial bending in a system fixed at both 

ends can be derived from fundamental beam equations. In this section, the formula for the 

center deflection is illustrated. This equation for a beam’s center deflection will then be 

adapted to analyze the MEMS three-layer system.  

Due to symmetry, analyzing half the beam is sufficient. Hence, in this study, a 

beam with half the membrane length, fixed at one end and free at the other will be 

considered. Figure 4.1 shows the center deflection when a system experiences negative 

curvature (beam deflects downwards).  
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Figure 4.1: Negative Center Deflection of a Beam (uy or δ) with Displacement along a 
Radius r, from Center. [12] 

 

Equation (19) shows the relationship between center deflection and the beam 

curvature. The beam curvature is assumed constant for the pure bending case. 

                               (19) 

When equation (19) is integrated twice, one obtains: 

(20) 

Applying the boundary conditions: 

 

The constants c1 and c2

(22) 

 both vanish. Hence, we obtain: 

(21) 

At the edge of the beam, r = L. By substituting equation 7, we obtain the center deflection 

as: 
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Since  = 1/ , where  is the radius of curvature, by combining equations 19 and 22 the 

center deflection can be represented more conveniently as: 

                        (23) 

 

4.4 Analysis of Center-Deflection in Multi-layer MEMS Devices Due to Thermal 
      Stress 

 In this thesis, we will concentrate on the effects of thermally induced deflection in 

a device that is comprised of multiple thin layers of film. The originally developed 

Stoney equation [13] is commonly used to determine the residual stress of a thin film on a 

thick substrate. One important limitation of employing Stoney equation for membrane-

based MEMS devices is that the derivation assumes film thickness to be negligible as 

compared to the substratrate thickness. Hsueh [32] recently developed an exact closed-

form solution that calculates the overall radius of curvature for a multi-layer thin film 

structure for which there is no limitation on the thickness of each layer of film. Using 

Hsueh’s method, there are always three unknowns to be solved and three boundary 

conditions that is to be satisfied regardless of the number of layers in a system. When a 

layer of thin film is deposited onto a layer of different material it is allowed to cool to 

room temperature. When cooled, the composite system is subjected to bending due to 

thermal expansion coefficient mismatch of the composite layer materials. The strain 

distribution in the system ε, can first be decomposed into two terms: the uniform strain 

component c, and the location of the bending axis, tb. Note that the bending axis is 

defined as the line in the cross section of the system where the bending strain is zero, not 
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the conventional neutral axis as described in the beam theory. Mathematically, the 

expression developed for the strain distribution in the system is given as: 

r
tz

c b−
+=ε                                                                                            (24) 

Where:  

 r:  is the radius of curvature for the system  

 z:  is the height of a thin film layer 

The boundary conditions are as follows; the first states that the resultant force due to the 

uniform strain component is zero: 

0).(
1

=∆−∑
=

ii

n

i
i tTcE α                                                                                     (25) 

Where: 

 i:  refers to each layer in the system 

 n:  is the number of layers in the system  

 α:  is the coefficient of thermal expansion  

The second boundary condition is that the resultant force due to the bending strain 

component is zero: 

∑ ∫
=

−

=
−n

i

h

h

bi
i

i

dz
r

tzE

1

)

1

0
(

                                                                     (26)  

Finally, the third boundary condition states that the sum of the bending moment with 

respect to the bending axis (z=tb) is in equilibrium with the applied moment: 
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∑ ∫
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i1 1

)(σ                                                                                   (27) 

Where: 

 M:  is the applied moment per unit width of the multilayer 

 σ: is the normal stress in each layer of the film 

When equations (25) to (27) are solved, the following would be obtained: 
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         (30) 

Where: 

ΔT:  is the temperature difference between the deposition temperature and the 

room temperature as the system is cooled. 

ti

The deflection δ, of the system as defined equation (23) is given as: 

: is the thickness of each layer in the system 

h: is the height of each film layer 
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r
L
2

2

=δ                                                                                                                 

Where: 

L: is the length of the beam 

 Equation (30) gives the radius of curvature for any system with multiple layers of 

thin film. Note that for a bilayer strip that consists of a single thin film on a substrate, 

equation (30) reduces to Stoney’s equation. 

 

4.5 Center Deflection in a Three-layer System 

The multilayer system that is being considered in this thesis consists of three 

layers, as that is the most commonly encountered configuration for membrane-based 

MEMS devices. One application that we will consider as a case study in this thesis is the 

MEMS capacitive micromachined ultrasonic transducers (CMUTs) that are used for 

ultrasonic imaging and other significant acoustic immersion applications [33-34]. The 

first layer of a CMUT membrane is silicon nitride (SINX) deposited at 2500C by PECVD 

system. The second layer is a metal electrode, deposited using direct current (DC) 

sputtering at approximately 600C. The third and final layer is another layer of silicon 

nitride to protect the metal electrode, deposited using PECVD at 2500C. The schematic of 

the multilayer system and the coordinate system is shown in figure 4.2 below. 
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Figure 4.2: Schematic of Three-Layer SINX-Metal-SINX

 For the first layer, after the deposition at 250

 MEMS Structure 

 

0C, the system is cooled to room 

temperature (250C). Figure 4.3b shows the composite structure when a thin metal 

electrode is deposited onto the first nitride layer. As the composite structure is cooled to 

room temperature, there is a mismatch in thermal expansion coefficient between the 

metal and the silicon nitride layer. This will cause the metal to exert a tensile stress on the 

bottom silicon nitride layer, bowing the system down as shown in figure 4.3c. To obtain 

the first radius of curvature, the temperature is first considered to increase from 250C to 

600C because the two layer system will be flat as shown in figure 4.3d. As the 

temperature is increased from 600C to 2500C, the system will experience a compressive 

stress and will give the first radius for the two-layer membrane with a temperature 

difference ΔT, of 1900C as shown in figure 4.4a. Silicon nitride is then deposited at 

2500C (figure 4.4b) to form the three-layer system. As the system is cool to room temp at 

250C (figure 4.4c), thermal stress is induced in the system which causes the structure to 

deflect downwards for the temperature difference of -2250C. This gives rise to the second 
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radius of curvature. Both these radius of curvature are superimposed to give the overall 

radius of curvature as shown in equation (30). 

 

Figure 4.3(a-d): Thermal Steps of the First Two Layers of the Three-Layer System 
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Figure 4.4: (a) Thermal Steps of the First Two Layers Along with Radius of Curvature, 
(b-c) the Complete Three-Layer System and its Radius of Curvature  
 

4.6 Analytical Modeling of a Three-layer Nitride-Metal-Nitride Membrane 

To analyze and design the three-layer system MEMS device, the Matlab® 

software was used to solve equations (23) and (28)-(30) simultaneously. As a reminder, 

the first radius of curvature is caused by the first layer of silicon nitride and the metal 

electrode (two layers) for a temperature difference of 1900C. The second contributor was 

the entire three-layer system: the bottom silicon nitride layer, the metal electrode, and the 

top silicon nitride layer. As the system is cooled to room temperature from the deposition 

temperature, the temperature difference is -2250

The membrane length for our analysis was 50 µm. This length was chosen as a 

reference, based on previous characterization of a micromachined capacitive transducer 

C. The radii of curvatures were 

superimposed to give the equivalent radius of curvature for the system: 

                                                    (31) 
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[33-34]. The center deflection of the system is obtained from equation (23) where a beam 

length L, of 25µm was used.  

4.6.1 Center Deflection and Thickness of Nitride Layer 

In this first part of the analysis, an aluminum electrode with a constant thickness 

of 0.12 µm was chosen as the second layer in the three-layer system. The thickness of the 

bottom silicon nitride layer was varied for a specified top nitride layer thickness, and the 

center deflection was calculated. The results are summarized in figure 4.5. From this 

figure, the center deflection is minimized by increasing the bottom silicon nitride layer as 

compared to the top nitride layer. Note that in a MEMS device design, the total thickness 

of both nitride layers should be kept constant to keep the frequency response of the 

device constant. As an example, if a total nitride thickness (H1+H3) of 2 µm is desired, 

the center deflection is reduced by increasing the thickness of the bottom layer and 

decreasing the thickness of the top nitride layer (figure 4.5). It is important to note that, 

the deflection caused by the thermal expansion coefficient difference is only one of the 

considerations that need to be addressed in a device design. For instance, for a CMUT 

design with low operation voltage, high output pressure and sensitivity, one need to 

decrease the first nitride layer [33-34]. This conflict with the results obtained from the 

thermal stress analysis. Hence, a thorough investigation needs to be carried out to obtain 

optimum design parameters. 
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Figure 4.5: Center Deflection of a 50 µm Three-Layer System as a Function of Bottom 
Layer of Silicon Nitride for Different Thicknesses above the Metal Electrode (H3) 
 
4.6.2 Effect of Metal Electrode Thickness on Membrane Center Deflection 

In this section, the effect of the metal electrode thickness on the center deflection 

for the membrane is investigated. Aluminum was chosen for the metal electrode because 

it is widely available, inexpensive, and highly conductive. From equations (23) and (28)-

(30), the thickness of the metal electrode is linearly proportional to the membrane 

curvature and hence, the membrane’s deflection.  
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The thickness of both the bottom and top silicon nitride layers (H1 and H3 

respectively) are taken as 0.8 µm. The membrane’s center deflection as a function of 

metal electrode thickness is plotted in figure 4.6. From this figure, we observe that 

thinner metal layer is preferred in design to minimize the effect of thermal stress on the 

deflection of the membrane. However, there is a limit to the thickness of the electrode 

that is necessary for a device to be fully functional due to metal resistivity limitation.  
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Figure 4.6: Center Deflection of a 50 µm Membrane as a Function of Metal Electrode 
Thickness 
 
4.6.3 Effect of Thermal Expansion Coefficient on Center Deflection 

In this section, different electrode materials were investigated for their effect on 

the center deflection of the membrane. The thickness of each metal was chosen as 0.12 

µm and the material properties for the electrode materials are given in table 4.1. 
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Table 4.1: Thermal Expansion Coefficient and Resistivity of Different Metal Alternatives 
for Electrode in the Membrane. [1], [35-37] 
 

 Aluminum 

(Al) 

Gold 

(Au) 

Platinum 

(Pt) 

Tungsten 

(W) 

Titanium 

(Ti ) 

Thermal Expansion 

Coefficient(10-6

23.1 

/K) 

14.2 8.8 4.5 8.6 

Resistivity(10-8 2.6  Ω-m) 2.3 10.6 4.82 39 

Young’s Modulus  

(109 N/m2

69 

) 

78 168 411 116 

 

 From equations (23) and (30), the radius of curvature and the center deflection are 

directly proportional to the difference between the coefficient of thermal expansion of the 

metal electrode and the membrane material. This effect is shown below in figure 4.7. 
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Figure 4.7: Center Deflection as a Function of Different Metal Alternatives with Constant       
Thickness  
  

 If we consider only the thermal expansion coefficients of the metal electrode, 

Titanium, Gold, Tungsten, and Platinum all reduce the thermal stress effects on the 

membrane. However, Tungsten for example (table 4.1) has a very large modulus of 

elasticity and may cause the membrane to be too stiff for certain applications. Most 

important though is that the resistivity of a metal determines its electrical conductivity. 
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The electrical conductivity of a metal is defined as the reciprocal of the metal’s 

resisitivity. A titanium electrode therefore, would be more likely to have a lower 

electrical conductivity than if gold was used (table 4.1). In addition, any capacitive 

MEMS device is adversely affected by the resistance of the top electrode. A high 

resistance can increase noise and loss in the system, thereby reducing sensitivity [33-34]. 

4.6.4 Thermal Expansion Coefficient with Normalized Electrode Thickness 

The thicknesses of the different metal alternatives that were discussed in the 

preceding section should be normalized. This is done to obtain the same electrical 

conductivity that was attained from a 0.12 µm aluminum electrode. The effective metal 

thickness for each metal is obtained from the base material, Aluminum (Al) as follows: 

            (32)   

The resistivity and effective metal thickness for the different metal alternatives are given 

in table 4.2 below. 

 

Table 4.2: Resistivity and Effective Metal Thickness for some Metal Alternatives. [36-
39] 
 

 Aluminum 

(Al) 

Gold 

(Au) 

Platinum 

(Pt) 

Tungsten 

(W) 

Titanium 

(Ti ) 

Resistivity (10-8 2.6  Ω-m) 2.3 10.6 4.82 39 

Effective metal thickness 

(µm) 

0.12 0.106 0.49 0.222 1.8 
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 As can be seen in table 4.2, to obtain the same electric conductivity of a 0.12 µm 

thick aluminum electrode, platinum requires a thickness of almost 0.5 µm while titanium 

needs to be 1.80 µm. These two metals are therefore not optimum selections as shown in 

the metal thickness analysis (figure 4.6) where the membrane deflection increases with 

the thickness of the metal. 

As illustrated in figure 4.8 below, Gold will serve as a good choice for a metal 

electrode within a membrane subjected to bow due to thermal stresses. Gold has a much 

lower thermal expansion coefficient and can give the same electric conductivity as 

aluminum with very low trade-off in thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

60 
 

 

Figure 4.8: Center Deflection as a Function of the Different Metal Alternatives with 
Electrode Thickness Normalized for the Metal Electrical Conductivity 

 

4.7 Curvature of a Thin Film on a Substrate Versus a Three-layer Membrane 

The stress that a single layer of thin film exerts on a substrate was given in 

equation (10). Equation (10) can be re-arranged to give the film curvature as a function of 
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      (33) 

Where: 

 = stress in silicon nitride film after PECVD deposition 

  = Young’s Modulus of silicon substrate  

  = Poisson’s ratio of silicon substrate 

 = thickness of the substrate  

  = thickness of the silicon nitride film 

 The film thickness and stress from four samples of silicon nitride that were 

deposited on silicon substrates using PECVD were taken and the values are shown in 

table 4.3. The average stress for four measurements was 32 MPa. 

 

Table 4.3: Thickness and Thin Film Stress of Four Samples Deposited by PECVD 

Thickness (nm) Film Stress (MPa) 

91 37.25 

89 18.5 

124 61.35 

114 11.25 

 

 The substrate and film parameters in equation (33) were entered into Matlab®, to 

obtain the film curvature K, as a function of the film thickness tf. The film thickness was 

varied from 80 nm (0.085 µm) to 130 nm (0.13 µm) and figure 4.9 shows the relationship 

between the film curvature and the thickness of the film.  
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Figure 4.9: Curvature of Silicon Nitride Film as a Function of its Thickness on a Silicon 
Substrate 

 

As can be seen from figure 4.9, the curvature of the silicon nitride film used on 

each substrate is on the order of 10-4 m-1
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.  The curvature also increases as the thickness of 

the nitride layer increase. A comparison of the curvature for the three-layer membrane 

and the curvature for a single layer of silicon nitride thin film deposited on a silicon 

substrate is illustrated in figure 4.10.  
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Figure 4.10: Curvature of Three-Layer Membrane (H2= 0.12 µm (Al), H3= 0.2 µm) and 
Single Nitride Layer on a Substrate, as a Function of Bottom Layer Thickness of the 
Membrane (H1). 
 

For the three-layer membrane, the thickness of the second layer (metal) was 

chosen to be 0.12 µm for an aluminum electrode, and the top nitride layer was kept at a 

constant value of 0.2 µm. From figure 4.10, the curvature in the three-layer membrane is 

far more significant than in a single nitride film deposited on a silicon substrate. Even as 

the bottom layer thickness (figure 4.10) is pushed to the limit of 2 µm, the curvature of 
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layer structure. Hence, among the three contributors to membrane bow, by far the thermal 

stress is the most significant contributor. However most of the studies simply ignore the 

thermal effect to the membrane bow in their analysis. Understanding and minimizing the 

effects of deflection due to thermal stress in membrane-based MEMS devices is therefore 

an important issue in micro-fabrication. 

 

4.8 Conclusion 

 In chapter 4, a relationship between the thermal film stress and the center 

deflection in a MEMS devices was established. Based on analytical results, it was found 

that the thickness and the thermal expansion coefficient of each layer are important 

parameters for controlling the center deflection. The center deflection is reduced when 

each film have close thermal expansion coefficients. If a metal layer is needed for a 

particular structure, the electrical resisitivity of the metal is a useful parameter that can 

assist in selecting the appropriate material for minimum center deflection, hence 

optimized operation. Center deflection analysis is also of importance in the design of 

optical MEMS devices where particularly flat surfaces are needed.  
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CHAPTER 5: APPLICATIONS OF MEMBRANE-BASED MEMS DEVICES 

5.1 Overview 

In this chapter, some devices that incorporate the use of membrane-based MEMS 

structures will be discussed. These are presented to demonstrate the importance of the 

carried out study resulting in this thesis. In addition, a greater appreciation of the 

increasing use of membrane-based MEMS devices is conveyed. 

 The first part of the chapter will give some general examples of membrane-based 

MEMS devices in use today. The focus of the second part of the chapter will be on 

micromachined ultrasonic transducer technology. In particular, capacitive micromachined 

ultrasonic transducers (CMUTs) will be discussed. CMUTs are being studied by many 

researchers, and some current and intended future work by the author will be mentioned. 

 

5.2 Common Membrane-based MEMS Devices 

Some common examples of membrane-based MEMS devices, some of which are 

already in the industry today include MEMS Inertial Sensors, micro-mirrors, MEMS RF 

switches, and MEMS micro-resonators [1-3], [38].  

5.2.1 MEMS Inertial Sensors 

Inertial Sensors measures both translation (accelerometers) and rotational 

(gyroscopes) acceleration. Micro-accelerometers measure the variation of translational 
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speed such as acceleration, deceleration, and very rapid deceleration (shock). In an 

automobile, a micro-accelerometer is combined with an electronic circuit and is used to 

detect a shock and launch the airbag. Figure 5.1 below is a typical example of a micro-

accelerometer, produced by an analog device. 

 

 

Figure 5.1: A Micro-accelerometer, ADXL Series, © Analog Devices Inc [38] 

5.2.2 MEMS Micro-mirrors 

 MEMS Micro-mirrors have been the subject of study for many years and have 

recently become commercially available. The Digital Micro-mirror Device (DMD) 

developed by Texas Instruments uses a micro-mirror matrix for video display and is used 

as a high quality video projector.  

 Digital Light Processing (DLP) is a system made of a large matrix of micro-

mirrors (DMD), and each mirror corresponds to a pixel. By the use of electrostatic 

actuation, the mirrors can change their angle of orientation. Therefore, when incident 
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light is directed on the matrix, the mirrors reflect a portion of the light to the screen, 

which depends on the orientation. Orientation angle therefore controls the luminance for 

each pixel. DLP is said to have advantages over Plasma, and LCD in terms of resolution 

and the best power ratio between light source and displayed light. The basic schematic of 

a DLP system is shown in the figure below and a MEMS digital micro-mirror device is 

shown in figure 5.3.  

 

Figure 5.2: DLP Projection System with Single DMD Chip, © Texas Instrument Inc [38] 
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Figure 5.3: Digital Micro-mirror Device (DMD), © Texas Instrument Inc [38] 

5.2.3 MEMS Micro-switch and Micro-Resonators 

 Probably the most common MEMS micro-switch that has been studied 

extensively is the MEMS radiofrequency (RF) switch. These are becoming quite popular 

and have the potential to replace full-electronic switches on applications where security, 

integration capabilities, and power consumption are critical. 

 Micro-Resonators are structures that vibrate instead of being displaced. They use 

mechanical vibrating parts to filter signals so that only one frequency, the Eigen 

frequency of the structure is kept. These can be used to replace electronic resonators and 

has application in electronic signal treatment where a back-and-forth conversion of 

electrical signal into mechanical stimulation is necessary. [3], [38] 

 Schematics of a typical MEMS micro-switch and a micro-resonator are shown in 

figure 5.4 and figure 5.5 respectively. 
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Figure 5.4: An Example of a MEMS RF Switch [38] 

 

 

Figure 5.5: Micro-resonators Fabricated at the IEMN University in France [38] 

5.2.4 MEMS Rotary Micro-motor 

A promising area of research in the academic arena is the use of electrostatic 

actuation to develop rotating micro-motor devices. Figure 5.6 below is an example of a 

harmonic micro-motor developed by Mehregany et al.[39] where a rotor that turns in a 
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stator ring “wobbles” around some central axis as it turns. The idea is to basically create a 

central freely moving rotor with surrounding capacitive plates that when driven in the 

correct phase, allows the rotor to turn [3]. 

 

Figure 5.6: SEM Image of a Harmonic (“Wobble”) Micro-motor [3], [39] 

 

In an ideal case, the micro-motor device will operate by pure rolling without 

sliding or friction. Large electrostatic forces can also be generated as a result of the rotor 

coming closely to the stator [3]. The devices are usually fabricated from sacrificial 

oxide/polysilicon processes and have diameters in the range of 60-120 µm. Voltages as 

low as 26 V was used for operating the micro-motor that had an air-gap of 1.5 µm and 

excitation voltages as high 150 V was used across the same size air-gap [39]. This device 

has potential application in optical scanning as shown by Yasseen in [40]. 
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Figure 5.7: Cross-section of a “Wobble” Micro-motor with Heavily-Doped Polysilicon 
Shield [40] 
 
5.2.5 MEMS Linear Micro-motors  

Many MEMS linear micro-motor devices have been fabricated and the principle 

of electrostatic actuation has been used in their operation [41-43]. One example is the 

Scratch Drive Actuator [42] that uses a flexible conductive plate with a small bushing at 

one end and is capable of producing a defined linear motion. An example of the 

application of the Scratch Drive actuator (SDA) was developed by Fukuta et al. [43] 

where the SDA was used in conjunction with a reshaping technology to provide self-

assembling to a 3-D polysilicon structure.  
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Figure 5.8: Scratch Drive Actuator Used in Self-Assembly of 3D Polysilicon Structure 
[43] 
 

The plate will buckle down (figure 5.8b) when some voltage is applied between 

the buried conductor on the substrate and the plate, this causes the bushing to move 

forward by a small distance [3], [43]. A net movement of the plate will occur when the 

applied voltage is removed which is caused from friction between the bushing and the 

surface of the insulator. 

5.2.6 MEMS Micro-grippers  

MEMS Micro-grippers have the ability for handling micron-sized objects and 

have potential use in biomedical applications and microtelerobotics [44]. The micro-

gripper discussed here is driven electrostatically by flexible, interdigited comb pairs and 
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have very small feature sizes.  Polysilicon electrostatic micro-grippers have been 

successfully demonstrated by Kim et al. [44] and have been shown to achieve a 10 µm 

movement with an applied voltage of only 20 V (figure 5.9). 

 

 

Figure 5.9: Electrostatic Micro-gripper (a) Top View, (b) Cross-sectional View [44] 

 

5.3 Micro-machined Ultrasonic Transducers: An Overview 

Ultrasonic Transducers are used to convert electrical energy into ultrasonic energy 

and vice versa. This conversion of energy can take place by use of different transduction 

mechanisms such as Piezoelectricity, Electrostatic, or Magnetostriction [3]. One of the 

main transduction mechanisms that have been useful in many large scale ultrasonic 

sensing devices are piezoelectric transduction. Piezoelectric transduction is based on the 
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piezoelectric effect which is the emission of charges from the surface of a material when 

a stress is applied [3].  

Because the performance of bulk piezoelectrics is well known, thin film 

piezoelectrics were naturally adopted for the fabrication of micro-scale transducers. Some 

of the materials used as thin film piezoelectrics include: zinc oxide, lead zirconate titanate 

(PZT), piezoelectric ceramics and piezoelectric polymers [45-49]. The main problem 

with these materials though is that they have very high acoustic impedance as compared 

to that of the medium such as water or air necessitating the use of acoustic matching 

layers [50]. This results in lower operation bandwidth and reduced efficiency [51].  

Alternative materials such as piezoelectric single crystals have been investigated 

but they are difficult to grow [52-53].  

Capacitive Micromachined Ultrasonic Transducers (CMUTs) have various 

advantages to the current state-of-the-art piezoelectric transducer technology. An 

overview of the fabrication process of CMUTs and two potential applications will be the 

focus of the next sections in this chapter. 

 

5.4 Capacitive Micromachined Ultrasonic Transducers (CMUTs) 

5.4.1 Background 

 Capacitive Micro-machined Ultrasonic Transducers (CMUTs) were first 

developed at the Stanford University in the 1990’s [51], [54]. 
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 Since the advent of CMUT technology, there has been extensive research about 

the design and modeling [55-66]; and the fabrication and experimental characterization of 

these MEMS-based ultrasonic devices [34], [67-72]. 

 There have been successful array implementations by CMUTs [50], [73] and 

these have been shown to offer some advantage over their piezoelectric counterpart. 

These advantages include a higher bandwidth, and lower cost due to new fabrication 

techniques.  

 Some application areas where CMUTs have been found useful are in ultrasonic 

imaging [74-78], and for some micro-fluidic applications [79-80]. 

5.4.2 Operation of Capacitive Micromachined Ultrasonic Transducers (CMUTs)

 The basic building block of a CMUT is a capacitor cell that consists of a 

metalized membrane with a moveable electrode (top electrode). This membrane is 

separated above a heavily doped silicon substrate (bottom electrode). Between the top 

and bottom electrode, there is an insulating layer (such as silicon nitride) which prevents 

the two electrodes from coming in contact. A single transducer element consists of many 

small capacitor cells that are connected in parallel, and many elements are used to make 

CMUT arrays [76-82].  

The basic operation of the CMUT is described as follows: first, a DC voltage is 

applied between the metalized membrane and the substrate (bottom electrode). The 

membrane is attracted to the bulk by the electrostatic force, and induced stress in the 

membrane balances the attraction. The membrane is then set to vibrate and generates an 
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ultrasonic wave when an AC voltage is applied to the electrode. Figure 5.10 below shows 

the basic setup of a single element of the transducer. 

 

 

 

 

 

Figure 5.10: Schematic of a Single CMUT Transducer Element [80] 

 

Figure 5.11: Annular Ring CMUT Fabricated with a Gap to Membrane Aspect Ratio of 
1:1000 [81] 
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5.5 Fabrication of Capacitive Micromachined Ultrasonic Transducers 

 A capacitive micromachined ultrasonic transducer designed for a micro-fluidic 

application is shown in the schematic below. 

 

Substrate

Buried top 
electrode

Bottom 
electrode

Silicon nitride 
membrane

Vacuum gap
Silicon nitride 

isolation

 

Figure 5.12: CMUT with Sealed Membrane Designed for Micro-fluidic Application [79] 

 

 Below is the summary of the process involved in fabricating a CMUT for an 

immersion application [34].  

 The surface micromachining process is a simple 5 mask process and requires the 

use of only three commonly used cleanroom equipments. These are a Plasma Enhanced 

Chemical Vapor Deposition (PECVD) deposition tool; a DC or RF metal sputtering 

station, and Reactive Ion Etch (RIE). A maximum process temperature of 250o

 The fabrication process flow is shown in figure 5.13 and the key information on 

each step is: (1) Bottom electrode Isolation: by deposition of low permittivity material, 

(2) Formation of bottom electrode; (3) Isolation of bottom electrode: deposition of low 

C (during 

PECVD nitride deposition) enables the fabrication of CMUTs directly on top of CMOS 

electronics chip. This maximizes the area usage and increase the transducer performance 

by minimizing the parasitic capacitance. 
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permittivity PECVD silicon nitride; this protects the bottom electrode (aluminum) during 

the release of the sacrificial layer (chromium); (4) Formation of sacrificial layer: the 

sacrificial layer is used to form the gap that separates the membrane from the substrate; 

(5) Top electrode isolation formation: PECVD silicon nitride isolation is deposited to 

protect the top electrode (aluminum) during the release step; (6) Top electrode formation; 

(7) Membrane deposition: additional PECVD silicon nitride is deposited to increase the 

membrane thickness and to protect the top electrode from chromium etchant during the 

release step; (8) Membrane release: etch holes are placed along each corner of the 

membrane. After alignment, the silicon nitride is etched with an anisotropic Reactive Ion 

Etch (RIE) tool, and then the wafers are kept in chromium etchant for approximately 12 

hours to form the gap; (9) Membrane sealing: the membranes are sealed for immersion 

applications, and to increase the membrane thickness to its design value by depositing an 

additional layer of silicon nitride in the PECVD station. During the silicon nitride 

deposition for the formation of the membrane in step 7, bondpads were also covered with 

silicon nitride. In the final step of the fabrication (not illustrated in Figure 5.13), the 

silicon nitride is etched in the RIE chamber to reveal the bondpads for final connection. 
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Figure 5.13: Illustration of the Fabrication Process Flow for a CMUT Designed for 
Immersion Application [34] 
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5.6 Future Work 

 Most of the future work will be tailored to the design of Capacitive 

Micromachined Ultrasonic Transducers. The use of a finite element modeling software 

such as ANSYS, will be used to compare the analytical results of the thermal stress 

discussed in chapter 4.  

 In addition, CMUTs will be fabricated directly at the University of South Florida 

state of the art Nanomanufacturing and Nanomaterials Research Center (NNRC). 

Diamond has recently been identified as a possible material for the CMUT membrane 

due to its good mechanical and electrical properties; and its ability to survive in harsh 

environments. These and other materials will be characterized and tested to broaden the 

spectrum of this new CMUT technology.  
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Appendix A: Sample MathLab® Code used for Calculating Center Deflection 

for (a=1:1:5) 

//Film Parameters// 

E1=110e9; 

E2=69e9; 

H1=linspace(0.2e-6,2e-6,1000); 

H2=0.12e-6 

H3=0; 

alpha1=8e-7; 

alpha2=23.1e-6; 

E3=110e9; 

alpha3=8e-7; 

deltaT1=190; 

deltaT2=-225; 

 

A=6.*(E2.*H1.*H2+H2.*H2.*E2+E3.*H3.*(H1+2.*H2+H3)).*E1.*H1.*(alpha2-

alpha1); 

B=6.*(E2.*H3.*H2+H2.^2.*E2+E1.*H1.*(H1+2.*H2+H3)).*H3.*E3.*(alpha3-alpha2); 

C=E1.*H1.*E2.*H2.*(4.*H1.*H1+4.*H2.*H2+6.*H1.*H2); 

D=E2.*H2.*E3.*H3.*(4.*H1.*H1+4.*H3.*H3+6.*H3.*H2); 

E=E1.*H1.*E3.*H3.*[4.*H1.*H1+4.*H3.*H3+6.*H1.*H3+12.*H2.*(H1+H2+H3)]; 
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Appendix A (Continued) 

F=E1.*H1.*H1+H2.*H2.*E2+E3.*H3.*H3; 

//Calculates first curvature// 

RAD1=(A+B).*deltaT1./(C+D+E+F); 

H3=0.2e-6*a; 

A=6.*(E2.*H1.*H2+H2.*H2.*E2+E3.*H3.*(H1+2.*H2+H3)).*E1.*H1.*(alpha2-

alpha1); 

B=6.*(E2.*H3.*H2+H2.^2.*E2+E1.*H1.*(H1+2.*H2+H3)).*H3.*E3.*(alpha3-alpha2); 

C=E1.*H1.*E2.*H2.*(4.*H1.*H1+4.*H2.*H2+6.*H1.*H2); 

D=E2.*H2.*E3.*H3.*(4.*H1.*H1+4.*H3.*H3+6.*H3.*H2); 

 

E=E1.*H1.*E3.*H3.*[4.*H1.*H1+4.*H3.*H3+6.*H1.*H3+12.*H2.*(H1+H2+H3)]; 

F=E1.*H1.*H1+H2.*H2.*E2+E3.*H3.*H3; 

//Calculates second curvature// 

RAD2=(A+B).*deltaT2./(C+D+E+F); 

 

//Sum curvatures to find total// 

RAD=RAD1+RAD2; 

//Calculates Center Deflection// 

if (a==1) 

def1=0.5*RAD*(25e-6)^2; 

end 
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Appendix A (Continued) 

if (a==2) 

def2=0.5*RAD*(25e-6)^2; 

end 

if (a==3) 

def3=0.5*RAD*(25e-6)^2; 

end 

if (a==4) 

def4=0.5*RAD*(25e-6)^2; 

end 

if (a==5) 

def5=0.5*RAD*(25e-6)^2; 

end 

end 

//Plot Center Deflection// 

plot(H1,def1,H1,def2,H1,def3,H1,def4,H1,def5) 
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